3.

研究目的 1.

座屈拘束ブレース(以下、BRB)とは、軸力を 負担する芯鋼材の全体座屈が拘束材で防止され、 圧縮側でも塑性変形能力を期待できる部材であ る。拘束材の形式は多様だが、鋼管の内部にモル タルなどの材を充填した形式が、高い塑性変形能 力を発揮することが知られている。この充填材に、 高炉スラグ微粉末などの粉体を用いたアルカリ 活性材料 (AAMs) を採用すれば、セメントを用い るモルタルより環境負荷を軽減できる見込みが ある。BRBの塑性変形能力を確保するために、充 填材に求められる性能として局部破壊の防止が 挙げられる。大内ら
いを参考に拘束材の載荷実験 を実施して、AAMs がモルタルの代替材となるか 検証したので、ここに報告する。

2. AAMs の圧縮強度試験

表1に、一般的な AAMs の構成を示す。AAMs の圧縮強度は、水と結合材(W/P)、スラグと結合 材 (BFS/P)、水ガラスとアルカリ刺激剤 (SS/SH または SS/SC) やナトリウムと水 (Na/W) などの 重量比で決定される。図1に、既往研究 2から抽 出した 92 体の試験結果について、圧縮強度と BFS/P または Na/W との関係を白丸で示す。BFS/P と圧縮強度に正の相関が、Na/W と圧縮強度に Na/W<0.20 で正、Na/W>0.20 で負の相関が見られ た。これから述べる本報の試験結果を、同図中に 黒四角で示すが、同様の傾向が見られた。

BFS/P とアルカリ刺激剤の種別に着目して AAMs の配合試験を実施した。図2に、養生期間 7日と28日で測定した強度を示す。水酸化ナトリ ウム (SH) を用いた場合、炭酸ナトリウム (SC) を用いた場合より圧縮強度が高かったが、アルカ リ刺激剤に SC を用いると、化学反応により気泡 が発生し、AAMs 内で空隙が増えたことが原因と 考えられる。28日強度は7日強度と比較して、モ ルタルでは1割大きかったが、AAMsでは5割以 上大きかった。AAMs はモルタルより、強度発現 が遅い傾向が見られた。

他に、BFS/Pが大きいほど、フロー値が上昇し たが、粘性が大きく、打設しにくいことを確認し た。

仲山 裕真

局部破壊実験 充填材の仕様が拘束材の局部破壊挙動に及ぼ す影響を、実験で検証した。図3に、試験体と載 荷装置を示す。拘束材が、局部変形した芯鋼材に よって構面外に圧縮される状況を、三点曲げ試験 で模した。拘束材には、内側に充填材を打設した 溝形鋼を重ね合わせる型式を採用した。充填材に は、無収縮モルタル(圧縮強度 64.6 N/mm²、フロ ー値 300) および表 2 に示す配合の AAMs を採用 した。大内ら¹⁾の予測式を用いて、BRBの塑性化 領域の軸方向変形が 4%となった状態における芯 材の局部変形を想定し、鋼治具の曲率半径を 70 mmとした。

1000 kN 万能試験機で試験体を単調圧縮載荷し た。中央底部と支点真上4箇所で、試験体の鉛直

表 1 AAMs の構成

分類	記号	材料名					
アルカリ 溶液(L)	SS	水ガラス(珪酸ソーダ)					
	SH	アルカリ刺激剤(水酸化ナトリ					
	SC	ウム、炭酸ナトリウム 等)					
結合材(P)	FA	フライアッシュ					
	BFS	高炉スラグ微粉末					
水	W	水					
細骨材	S	砂					

Local resistance of BRBs utilizing Alkali-Activated-Materials as filler

変位を測定し、支点の平均変位に対する中央底部の相対変位を変形の指標とした。

図4に、実験で得た荷重と変位関係と、大内ら ¹⁾が提案した充填材の支圧破壊耐力 P_1 、Lin ら³⁾ が提案した溝形鋼の破壊耐力 P_2 を併せて示す。 P_1 は、坂田ら⁴⁾のモデルと、Hertz の接触理論⁵⁾ で、支圧耐力と接触幅が一致した場合の値をとる。 どの試験体に対しても、 P_2 が P_1 より大きく算定 された。

接線剛性が弾性時の半分になった時点で、局所 変形が顕著になった (図 4 中の \vee)。この時点の耐 力は $P_1 \ge P_2$ を上まわったので、いずれの耐力 式も、局部破壊を安全側に評価した。大内ら¹⁾が 観察したように、充填材がせん断破壊して、荷重 が溝形鋼だけで負担される機構に移行すると、耐 力は上昇した。

図5に、相対変位が4mmのときに撮影した、 試験体底部の写真を示す。充填材の強度が大きい モルタルでは、拘束材が全体的に変形したが、充 填材の強度が小さいSC20では、変形が載荷点で 大きくはらみだした。図4より、充填材の圧縮強 度が大きいほど、同じだけ変形するのに必要な荷 重が大きくなることが読み取れることから、充填 材の圧縮強度が大きいほど、芯材が拘束材に及ぼ す直交分力はより広い範囲の鋼壁に伝達してい ると予想される。

4. 結論

本論で得られた知見を以下に示す。

- 炭酸ナトリウムを使用した場合、水酸化ナトリウムを使用した場合と比較して AAMs の強度が低くなった。スラグ・結合材の重量比が高いほど、AAMsの圧縮強度は大きかったが、粘性が高く、打設しにくかった。
- 2) 圧縮強度をパラメータとした局部破壊実験から、局所変形が顕著になった時点の耐力は理論耐力を上回った。理論耐力の提案手法は局部破壊を安全側に評価していることを確認した。また、充填材の圧縮強度が大きいほど、局部破壊による材軸方向の変形が試験体全体に広がる傾向がみられた。

参考文献

- 1) 大内ら,本建築学会大会学術講演梗概集,pp.719-720,2018.9
- 一宮ら、コンクリート工学年次論文集, Vol.33, No.1, pp.575-580, 2011.7
- 3) Lin PC etc., AIJ annual conference, pp.1183-1184, 2017.8
- 4) 坂田ら,構造工学論文集, Vol.56B, pp.81-86, 2010.3
- Timoshenko SP and Goodier JN: Theory of Elasticity (Third Edition, International Student Edition), McGraw Hill Book Company, 1970

	BFS/P	Na/W	単位量[kg/m ³]							口綻跆座		
配合			L		Р		W	c	Total	八小的速度 [N/mm2]	フロー値	
			SS	SH(SC)	FA	BFS	vv	٥	Total	[19/11112]		
SH20	0.20	0.16	170	30.4	352	87.9	78.4	1320	2040	18.2	235	
SH30	0.30	0.18	170	30.4	308	132	59.3	1320	2020	24.0	248	
SH40	0.40	0.18	170	30.4	264	176	59.3	1320	2020	38.4	234	
SC20	0.20	0.13	170	24.7	352	87.9	78.4	1320	2030	15.8	243	
SH20A	0.20	0.12	213	21.6	471	118	106	1320	2250	18.2	-	
SC20A	0.20	0.13	213	28.6	471	118	93.7	1320	2240	1.5	-	
SH50	0.50	0.18	170	30.4	220	220	59.3	1320	2020	58.8	267	
※ # 告封 瞬 っ 仮用 した む っ た 町 へ た 町 へ た 朝 山 は っ た 町 へ た 朝 山 は っ 走 可 人 な 細 山 に っ 走 可 人												

表 2 AAMs の配合

※載荷試験で採用した配合を白、採用しなかった配合を網掛けで表す。

