1. 背景と目的

鋼構造で部材のリュースを実現するためには、地震を受け てひずみ硬化を伴う塑性変形を生じ、さらに時間を経てひず み時効を生じたあとの機械的特性、つまり強度の上昇や変形 能力の低下、破壊靭性の低下を把握する必要がある。そこで、 ひずみ硬化とひずみ時効の有無が、延性破壊条件に与える影 響を検証する目的で、異なる応力状態を生じる切欠き試験体 の単調引張試験を実施した。

2. 鋼材の破壊則

鋼材の破断は、不純物や微小欠損の周囲に空隙を生じ、その 空隙が拡大して繋がって延性亀裂に成長し、破壊に至る現象 だと理解されている¹⁾。式(1)は、延性破壊に至った時点の相 当塑性ひずみ ϵ を、応力三軸度 η と正規化 Lode 角 $\bar{\theta}$ と関 係づける関数²⁾で、機械・建築分野で広く使用されている。

$$\bar{\epsilon} = \left[\frac{1}{2}(D_1 e^{-D_2 \eta} + D_5 e^{-D_6 \eta}) - D_3 e^{-D_4 \eta}\right]\bar{\theta}^2 + \frac{1}{2}(D_1 e^{-D_2 \eta} - D_5 e^{-D_6 \eta})\bar{\theta} + D_3 e^{-D_4 \eta}$$
(1)

上式で、 D_1 から D_6 は、材料に固有の係数である。また、 η と $\overline{\theta}$ は、式(2)および(3)で定義される。

$$\eta = \frac{\sigma_m}{\overline{\sigma}} \tag{2}$$

$$\bar{\theta} = 1 - \frac{2}{\pi} \arccos\left(\frac{27(\sigma_1 - \sigma_m)(\sigma_2 - \sigma_m)(\sigma_3 - \sigma_m)}{2\bar{\sigma}^3}\right)$$
(3)

ここで、 σ_m は平均応力(静水圧応力)、 $\overline{\sigma}$ は相当応力で、主応力 σ_1 、 σ_2 、 σ_3 と以下のように関連付けられる。

$$\sigma_m = \frac{1}{3}(\sigma_1 + \sigma_2 + \sigma_3) \tag{4}$$

$$\overline{\sigma} = \sqrt{\frac{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2}{2}}$$
(5)

3. 実験計画

ひずみ硬化とひずみ時効の有無で、材料係数 D_1 から D_6 がどのように異なるかを評価する目的で、合計 30 体の引張試 験を実施した。製鉄会社の異なる 2 枚の SS400 電炉鋼板 PL-22×2000×200 を、鋼材 A と B と命名した。表 1 に、ひずみ時 効に関連する炭素 (C)、全窒素 (TN)、自由窒素 (FN) の含 有量と、引張試験で測定した機械的特性を示す。C はミルシ ートに記載された値、TN と FN は、別途 JIS G 1228-1 アンモ ニア蒸留分離アミド硫酸滴定法で計測した値である。いずれ の鋼材も、TN の多寡の基準と考えられる 0.006 wt%を超えた が、特に鋼材 B の TN が多かった。

鋼材 A と B から、表 2 に示す通り、切欠き無し(形状 0)、 円形切欠き(形状 I)と長方形切欠き(形状 II)の 3 つの形状、

南出 怜音

全7種類の試験体を、圧延方向が引張方向と一致するように 採取し、容量1,000 kNの万能試験機を用いて、1段階または 養生期間を挟んだ2段階で単調引張載荷した。

形状 0 は、試験部が直径 10 mm の円形断面、標点間距離が 50 mm の引張試験片で、3 体ずつ製作した。予ひずみ 2%の有 無、予ひずみ後の養生期間(7 日と 30 日)をパラメータに試 験した。単軸引張状態を実現するので、理論的に $\eta = 1/3$ 、 $\bar{\theta} = 1$ である。図1に、鋼材 B の3 体から得た応力とひずみの 関係を示す。当初の降伏強度を σ_{y0} 、養生期間 30 日後の 2 段 階目で測定した降伏強度を σ_y と表記して区別する。養生を経 たあと、降伏棚が再出現し、降伏強度が上昇したが、引張強度 と伸びはあまり変わらなかった。

形状 I と II は、異なる応力状態を生じさせる目的で、円形 断面の中央部に切欠き加工を施した試験体で、Smith ら³⁾を参 考に、図 2 に示す寸法を定めた。形状 I も II も、寸法が異な る 3 種類を 2 体ずつ製作した。2 体のうち一方には、はじめか ら切欠き加工を施し、もう一方には、予ひずみ 2%を与えたあ と、30 日の養生期間中に切欠き加工を施した。形状 I と II は、 最小断面の中央に破断起点を形成するが、その起点の応力環 境を表現したのが、表 2 に示す応力状態パラメータである。 形状 I については、理論的に塑性状態の応力三軸度 η_f が式(6)で 近似され³、 $\bar{\theta} = 1$ である。

$$\eta_f = \frac{1}{3} + \sqrt{2} \ln \left(1 + \frac{D_{\min}}{4R_N} \right) \tag{6}$$

4. 数值解析

有限要素法解析ソフト Adina ver. 23.00⁴を用いて、形状 I を円筒座 標系の有限要素法モデルで弾性解析した。図3に、最小断面につい て算定した η と $\bar{\theta}$ の分布を示す。中心付近で $\bar{\theta}$ はおおよそ1だ

表1鋼材の化学成分と機械的特性

	化学	学成分 [w	t%]	機械的特性			
鋼材	C	TN	FN	σ_{y0}	σ_{u0}	伸び	
	C	IIN	I'IN	[N/mm ²]	$[N/mm^2]$	[%]	
А	0.12	0.0089	0.0083	263	428	37.9	
В	0.10	0.0118	0.0103	275	430	36.3	

Tension Tests to Verify Ductile Fracture Law of Steel after Strain Hardening and Strain Aging Reo MINAMIDE

形状	No.	寸法					応力状態パラメータ		
		D_{UN}	R_N	D _{min}	t_S	t_L	η_e	η_f	$\bar{\theta}_e = \bar{\theta}_f$
0	1	10	-	-	1	-	0.33	0.33	1
I	2	20	3	14	I	-	0.74	1.47	1
	3	16	3	10	-	-	0.82	1.19	1
	4	16	3	8	-	-	0.89	1.06	1
Π	5	20	3	-	4	8	有限要素法解析により		
	6	20	4	-	4	5	今後、特定する		
	7	20	3	-	4	14			

表2 試験体の形状・寸法と応力状態パラメータ

が、 η が 1/3 より高いことは、直交方向の拘束が大きいことを表している。この弾性解析によって求められた切欠き中央点の応力三軸度を η_e として、表2に示す。

5. 実験結果

図4に、試験体2、4、7で得た荷重 P と標点間変位の関係と、 予ひずみ有りの破断面の写真を示す。ここに示さないが、予ひずみ の有無で破断面に違いは見られなかった。荷重を、最小断面積の初 期値 A_{min0} で除し、形状 0 で測定した σ_{y0} と σ_{u0} を参考値として 示す。式(1)に代入する $\bar{\epsilon}$ 、η、 $\bar{\theta}$ の値を採取する時点、つまり延 性破壊を生じたと判断する時点を三角形印で示す。拘束効果に より、見かけ上の降伏強度と引張強度は、 σ_{y0} と σ_{u0} を大きく超えた。 予ひずみ有りは、予ひずみ無しと比較して、引張耐力が最大で 9% 高く、伸びは10%から 25%小さかった。 η_e で表現される図5に、 形状 I について、0.2%オフセット法に基づいて定めた見かけ上の 降伏応力 P_y / A_{min0} と η_e の関係を示す。軸対称性とミーゼス の降伏条件から、式(7)の関係式を導出した。

$$\frac{P_y}{A_{\min 0}} = \sigma_y \left(\eta_e + \frac{2}{3} \right) \tag{7}$$

降伏強度に、予ひずみの有無に応じた値をとった。η_eは、直 交方向の拘束を表しており、この値が大きいほど、降伏荷重が 大きくなるという(7)式に、形状Ιの試験結果はよく整合した。

図4中の破断面をみると、例外なく、中央付近にささくれ だった荒い破面があり、その外周に光沢のある比較的滑らか な破面を確認できた。前者は、空隙の成長によって形作られた 繊維状破面で、後者は、中央の亀裂が進展した後に破断したシ ェアーリップと考えられる。破断面から、形状 I や II の切欠 き付き試験片では、切欠き中心が延性破断の起点であったこ とが確認された。

6. まとめと今後の展望

3つの形状のいずれも、ひずみ時効による降伏強度と引張強

度の上昇を示した。円形切欠きの形状 I について、有限要素 法解析によって、弾性範囲の $\eta \ge \overline{\theta}$ を求めた。

今後、非線形材料モデルを用いた有限要素法解析を実施し て、延性破壊を生じる時点の ϵ_f 、 η_f と $\bar{\theta}_f$ を算定し、式(1)に 代入して、鋼材種と予ひずみ有無の両方について、延性破壊を 規定するパラメータ D_1 から D_6 を特定する。さらに、同じ 鋼材 A と B から製作した試験体 No. 2 から 7 について、引 張・圧縮繰返し載荷試験も実施して、延性破壊条件の適用性を 検証する計画である。

7. 参考文献

- 1) Rice, Tracey: ON THE DUCTILE ENLARGEMENT OF VOIDS IN TRIAXIAL STRESS STATES 1969
- Bai, Wierzbicki : A new model of metal plasticity and fracture with pressure and Lode dependence 2008
- Smith C, Deierlein G, Kanvinde A: A Stress-Weighted Damage Model for ductile fracture initiation in structural steel under cyclic loading and generalized stress states 2014
- 4) Bentley Systems, Inc. (2023) Theory and Modeling Guide ADINA 23.00

