# 減衰モデルが弾塑性系の時刻歴応答解析に与える影響

Influence of Damping Model on the Time-History Response Analysis of Elastic-Plastic Systems

建築都市空間デザイン専攻空間防災講座建築構造工学研究室福富将

#### Abstract

In time history analysis of building structures, damping is commonly modeled by classical damping models such as stiffness proportional damping or Rayleigh damping. However, these common models can lead to unrealistically large damping forces as the system yields, and, in turn, lead to underestimation of the response deformation and acceleration. Literature survey and time-history analysis of basic models were conducted to examine how the choice of damping model affects the computed nonlinear behavior. Quantitative comparison was made to comment on the limitations of the Rayleigh damping model.

Keywords: Damping Model, Time-History Analysis, Rayleigh Damping, Classical Damping, Software

## 1. はじめに

建築・土木構造物の地震応答解析における減衰 は、減衰比が周波数に依存しないこと<sup>1</sup>、極めて 固有振動数が大きい高次モードは地震応答に関 与しないこと<sup>2)</sup>を前提においている。研究でも実 務でも、レイリー減衰に代表される比例減衰が一 般的に採用される。レイリー減衰は、質量比例項 と剛性比例項の線形結合として、式(1)で表される。

## $[c] = a_0[m] + a_1[k] \tag{1}$

ここで、[c]は減衰行列、[m]は質量行列、[k]は剛 性行列、a<sub>0</sub>、a<sub>1</sub>は係数である。レイリー減衰には、 系の固有振動数に応じた減衰を設定でき、自由度 の大きな系でも計算効率が良く<sup>1),2),3)</sup>、弾性域では、 広い振動数域で計算結果を実測値に一致させら れる等の特徴がある<sup>4)</sup>。しかし、系が降伏し、剛 性とともに固有振動数や固有モードが変動すれ ば、レイリー減衰は減衰力を大きく見積もりすぎ る懸念が指摘されている<sup>5),6),7)</sup>。そこで本研究は、 振動解析で提案される種々の減衰モデルについ て、構造物の弾塑性応答に対する適性を比較、検 討した。

### 2. 種々の減衰モデルについて

表1に、数値積分法に基づく時刻歴応答解析を 対象に提案されている、主要な減衰モデル <sup>1,5)6),7),8),10)を整理する。ここで、 $\{\Phi_i\}$ は*i*次の固 有ベクトル、 $\omega_i$ は*i*次の固有円振動数、 $M_i =$  $\{\Phi_i\}^T[m]\{\Phi_i\}$ は*i*次の広義質量、 $\bar{\zeta}_{k0}$ は選択した *k*次モードに対する目標減衰比、 $a_i$ は、 $\omega_k$ と $\bar{\zeta}_{k0}$ によって定まる係数である。上添字『\*』は、弾塑 性状態に応じてその [k]、 $\{\Phi_i\}$ 、 $a_i$ または $M_n$ を 逐次更新することを意味する。固有ベクトルや係</sup> 数の更新は、解析ステップごとのモード解析を必要とするので、計算負荷が大きい。表1に示す比例・非比例の分類は、剛性の変化に追従して、常に比例減衰であるか否かを示す。保持とは、常に比例減衰のモデルのうち、予め選択したモード(k次モード)の減衰比を目標値に保持できるものである。代表的な数値解析ソフトウェア 9-13)に組み込まれている減衰モデルを『〇』で記す。

モデル1は質量比例減衰、モデル2は剛性比例 減衰である。塑性状態でモデル2は非比例減衰と なり、モデル1は比例減衰だが、減衰比を保持で きない<sup>1)</sup>。モデル3は、瞬間剛性をとるので、塑 性状態でも常に比例減衰である<sup>1)</sup>。モデル4は、 係数 a<sub>1</sub> も更新することで減衰比を目標値に保 持できる、モデル3の改良型である。モデル5は、 いわゆるレイリー減衰 1)で、塑性状態で非比例減 衰となる欠点がある 5。モデル6は、初期剛性で なく瞬間剛性をとり、常に比例減衰とする、レイ リー減衰の改良型である 5).6。モデル7は、剛性 行列に加え、係数 a<sub>0</sub> と a<sub>1</sub> も逐次更新し、減衰 比を保持する 5。モデル8は、瞬間剛性をとるが、 係数を更新しないため、モデル7より計算負荷が 小さい。弾性限を超えると非比例減衰となるが、 質量比例項の寄与を抑え、振動数の小さな領域で 減衰力が大きくなりすぎないように工夫したモ デルである 7。モデル9は、カギー減衰の一般型 で、項数 Nを大きく取ることで、高次モードまで 減衰比を指定できる 14)。モデル 10 は、カギー減 衰から、剛性行列の寄与が小さい2項だけ取り出 すもので、剛性行列も係数も更新しないが、減衰 比を目標値の近くに保持できる利点がある 5。モ デル11は、モデル10に1項足すことで、より高 次のモードまで減衰比を目標値の近くに保持で

Laboratory of Structural Engineering, Research Group of Structural and Urban Safety Design

きる<sup>6),16</sup>。モデル12は、予め設定した特定のモー ドの組合せから減衰行列を決定するもので<sup>8)</sup>、レ イリー減衰やカギー減衰と系統が異なる。モデル 13は、モデル12の各項を逐次更新する改良型で、 減衰比を保持できる。モデル14は、要素別に減衰 比を指定する減衰モデルで、制振構造等で実用さ れる<sup>9),10),11)</sup>。

#### 3. 等価減衰比の定義

Charney<sup>5</sup>は、系の弾塑性状態に応じた減衰比を 評価するために、式(2)の等価減衰比を提案した。

$$\zeta_{n,eq} = \frac{\{\Phi_i^*\}^T[c]\{\Phi_i^*\}}{2\omega_i^*\{\Phi_i^*\}^T[m]\{\Phi_i^*\}}$$
(2)

ここで、 $\omega_i^* \& \{ \Phi_i^* \}$ は、逐次算定した、i次の固 有振動数とモードベクトルである。系が弾性であ る限り、選択したk次モードに対して、 $\zeta_{k,eq}$ は必 ず目標減衰比に一致する。系が降伏して固有振動 数や固有モードが変化した場合、例え [c]が比例 減衰でなくとも、 $\zeta_{i,eq}$ は必ずスカラー量をとる。

同じ概念を拡張して、逐次の有効モード質量 $m_i^*$ と、逐次の有効モード質量比 $\gamma_i^*$ を、式(3)と(4)で計算できる。

$$m_i^* = \beta_i^{*2} \cdot \{\Phi_i^*\}^T[m]\{\Phi_i^*\}$$
(3)

$$\gamma_i^* = m_i^* / \sum_{i=1}^N m_i$$
 (4)

ここで、 $eta_i^*$ は逐次の刺激係数である。

さらに、 $\gamma_i^*$ を利用して、減衰比の代表値 $\zeta_{eq}$ を、 式(5)によって逐次計算することができる。

$$\zeta_{eq} = \sum_{i=1}^{N} \zeta_{i,eq} \cdot \gamma_i^* \tag{5}$$

以下、 $\zeta_{n,eq}$  と  $\zeta_{eq}$ を利用して、表1の減衰モデルを比較、検討する。

#### 4. 解析方法

せん断型5自由度系の地震応答解析を実行した。 階高を、1層目が5m、2層目から5層目が4m、 各層の床面積を6m×30m、床重量を8kN/m<sup>2</sup>と 想定した。弾塑性復元力特性に、図 1(a)と(b)に示 す Bilinear 型と Menegotto-Pinto 型の2通りを用い た。Bilinear 型は、Ai 分布にしたがって地震力を 比例増加させた場合に、ベースシア係数 0.3 で全 層がほぼ降伏するように耐力を定め15、そのとき の層間変形角がほぼ 0.0075 rad となるように各層 の剛性を定めた。2次勾配を初期勾配の 0.01 倍と した。図1に示す白丸は、ベースシア係数が0.2 と 0.3 のときの、各層の層間変形角と耐力を示し ている。Menegotto -Pinto 型は、層間変形角 0.02 rad で、単調載荷のエネルギー吸収量が Bilinear 型と 等しくなるように諸元を定めた。5自由度系の1、 2、3 次固有周期は、1.14、0.44、0.28 s だった。入 力地震動は、1995年兵庫県南部地震の JMA 神戸 記録のNS成分とした。目標減衰比を0.05に設定 し、モデル1から4では1次モード、モデル5か



図 1 (a) 5 自由度系の復元力特性; (b) Bilinear 型 と Menegotto-Pinto 型の関係

|     | 減衰モデル                                                                                                                | 分類    | 解析ソフトウェア           |                      |                      |                         |                        |
|-----|----------------------------------------------------------------------------------------------------------------------|-------|--------------------|----------------------|----------------------|-------------------------|------------------------|
| No. |                                                                                                                      |       | SNAP <sup>9)</sup> | Midas <sup>10)</sup> | ADINA <sup>11)</sup> | Opensees <sup>12)</sup> | SAP2000 <sup>13)</sup> |
| 1   | $[c] = a_0[m]$                                                                                                       | 比例    | 0                  | 0                    | 0                    | 0                       | $\bigcirc$             |
| 2   | $[c] = a_1[k]$                                                                                                       | 非比例   | 0                  | 0                    | 0                    | 0                       | 0                      |
| 3   | $[c] = a_1[k^*]$                                                                                                     | 比例    | 0                  | 0                    | 0                    | 0                       |                        |
| 4   | $[c] = a_1^*[k^*]$                                                                                                   | 比例・保持 |                    |                      |                      |                         |                        |
| 5   | $[c] = a_0[m] + a_1[k]$                                                                                              | 非比例   | $\bigcirc$         | $\bigcirc$           | $\bigcirc$           | 0                       | 0                      |
| 6   | $[c] = a_0[m] + a_1[k^*]$                                                                                            | 比例    | 0                  | 0                    | $\bigcirc$           | 0                       |                        |
| 7   | $[c] = a_0^*[m] + a_1^*[k^*]$                                                                                        | 比例・保持 |                    |                      |                      |                         |                        |
| 8   | $[c] = a_0[m][k]^{-1}[k^*] + a_1[k^*]$                                                                               | 非比例   |                    |                      |                      |                         |                        |
| 9   | $[c] = [m] \sum_{i=0}^{N-1} a_i ([m]^{-1}[k])^i$                                                                     | 非比例   |                    |                      |                      |                         |                        |
| 10  | $[c] = a_{-1}[m][k]^{-1}[m] + a_0[m]$                                                                                | 非比例   |                    |                      |                      |                         |                        |
| 11  | $[c] = a_{-1}[m][k]^{-1}[m] + a_0[m] + a_1[k^*]$                                                                     | 非比例   |                    |                      |                      |                         |                        |
| 12  | $[c] = [m] \left( \sum_{i=1}^{N} (2\bar{\zeta}_{i0}\omega_i / M_i) \{\Phi_i\}^T \{\Phi_i\} \right) [m]$              | 非比例   | $\bigcirc$         | $\bigcirc$           | $\bigcirc$           | $	riangle^*$            | $\bigcirc$             |
| 13  | $[c] = [m] \left( \sum_{i=1}^{N} (2\bar{\zeta}_{i0} \omega_i^* / M_i^*) \{ \Phi_i^* \}^T \{ \Phi_i^* \} \right) [m]$ | 比例·保持 |                    |                      |                      |                         |                        |
| 14  | $[c] = [m][\Phi] \Big[ \langle 2\bar{\zeta}_{i0}\omega_i \rangle \Big] [\Phi]^T [m]$                                 | 非比例   | 0                  | 0                    | 0                    |                         |                        |
|     |                                                                                                                      |       |                    |                      |                      |                         |                        |

表1 減衰モデルの種類

※Newmark の β 法では使用不可

ら8と10では1と3次モード、モデル9と12か ら14では全5モード(表1においてN = 5)、モ デル11では1、2と3次モードの減衰比を、この 目標値に一致させた。時間積分に中央差分法を用 い、時間刻みは1/500sとした。

#### 5. 解析結果

図 2 に、Bilinear 型の 3 層目を例に、モデル 5、 8 と 13 の復元力・減衰力と層間変形角の関係を、 解析時刻 4 から 6 s までで比較する。図 3 に、 Menegotto-Pinto 型の 3 層目を例に、モデル 5 の復 元力と減衰力を示す。①は 5 s、②と③は降伏と除 荷開始、④は 5.5 s の時刻点で、①から④までの 履歴を太実線で示す。減衰力は、復元力の 10 分の 1 のオーダーであった。復元力は、モデル 5、8 と 13 のいずれを選択しても、ほとんど違わなかった。 しかし、減衰力は、②から④までの間で、モデル ごとに大きく異なった。復元力が、降伏限に達す るときの減衰力は、モデル 5 が減衰力を大きく見積



図 3 モデル 5 の (a) 復元力と (b) 減衰力の履歴

もった。モデル5の減衰エネルギーは、モデル13の倍近かった。

図4に、Bilinear型とMenegotto-Pinto型のそれ ぞれについて、1から13の減衰モデルを用いた場 合の、各層の最大層間変形角を示す。降伏後に系 の剛性が急変するBilinear型では、1層と5層の 最大層間変形角が、減衰モデルによって倍半分も 異なった。2つ以上のモードから減衰比を設定す る番号5以上の減衰モデルでは、Menegotto-Pinto 型でもBilinear型でも、モデルによる違いは20% 程度に収まった。

#### 6. 考察

図5に、Bilinear型とモデル5(1次と3次で目 標減衰比を定めたレイリー減衰)を用いた場合の、 1、3、5次の $\gamma_i^*$ と $\zeta_{n,eq}$ 、 $\zeta_{eq}$ の時刻歴を示す。図2 と同じ、解析時刻4から6sまでの2秒間をとり 出し、①から④の時刻点を示した。弾性範囲では、  $\gamma_1^* = 0.85, \gamma_3^* = 0.03, \gamma_5^* = 0.005, \zeta_{1,eq} = 0.05,$  $\zeta_{3,eq} = 0.05, \zeta_{5,eq} = 0.07$ である。図を見ると、系 が降伏すると、γ1\*は0.2まで減少、γ3\*は0.4まで 増大、γ5\*は0.2まで増大する瞬間があり、卓越モ ードが大きく変化した。 $\zeta_{1,eg}$ は 0.5 に、 $\zeta_{3,eg}$ は 0.7 に達したが、 ζ5.eg は弾性範囲の 0.07 からほとんど 変化しなかった。式(5)で定義した減衰比の代表値 ζeaは、3層が降伏した時刻②から③までの間など で、最大で 0.5 にも達した。図 5(c)に色分けで示 すように、1次モードがζegのほとんどを占めてい た。

図 6 に、Bilinear 型で得た $\zeta_{eq}$ の時刻歴を、レイ リー減衰系のモデル 6、7 と 8、あるいはモード減



図 4 各層の最大層間変形角: (a) Bilinear 型; (b) Menegotto-Pinto 型

衰系のモデル 12 と 13 に分けて示す。 $\zeta_{eq}$  は、系 が降伏すると、モデル 6、7、12 で目標値 0.05 を 超え、モデル 8 で目標値を下まわったが、モデル 13 で常に目標値に一致した。モデル 6 と 12 は、 図 5(c)に示したモデル 5 と同等に大きな値を示し、 モデル 7 と 8 は、目標値に近い値をとった。図示 しないが、Menegotto-Pinto 型を用いた場合は、 Bilinear 型と比較して  $\zeta_{eq}$  の変動幅が 4 分の 1 程 度であった。この例から、Charney<sup>5)</sup>や Chopra<sup>6)</sup>が 指摘するように、系が降伏した状態では、モデル 5 のレイリー減衰が減衰比を大きく見積もること、 この欠点が、剛性行列の更新だけでは解消されな いことを確認できた。

図7に、Menegotto-Pinto型を用いた場合について、各減衰モデルで、減衰エネルギーの75%が消



図 5 Bilinear 型とモデル 5 を用いた場合: (a)  $\gamma_i^*$ ; (b)  $\zeta_{n,eq}$ ; (c)  $\zeta_{eq}$  の時刻歴



図 6 Bilinear 型を用いた場合の*ζ<sub>eq</sub>の時刻歴* (a)モデル 6、7、8; (b) モデル 12 と 13 費されるおよそ7秒間で平均したζ<sub>eq</sub>を、減衰エネ ルギーと関連づける。ζ<sub>eq</sub>の平均値と減衰エネルギ ーには、相関係数 0.933 の強い相関関係がみられ た。ζ<sub>eq</sub>が常に目標値に一致するモデル 13 を仮に 正解とすると、大多数のモデルは減衰エネルギー を過大評価したが、モデル7は極めて正解に近く、 モデル8は過小評価した。

#### 7. まとめ

知られている 13 種類の減衰モデルについて、 多自由度系の地震応答解析によって、弾塑性応答 に対する適性を比較、検討した。主な結論を、以 下にまとめる。

- 従来の指摘どおり、レイリー減衰は、系が降伏 したときの減衰力を過大評価すること、その傾 向が、Menegotto-Pinto型の履歴モデルより Bilinear型でより顕著なことを確認した。
- モデル13は、ζ<sub>eq</sub>を常に目標値に一致させるので、検討したモデルの中で最も信頼できる。モデル7と8も、ζ<sub>eq</sub>が目標値から少し外れるが、 適切なモデルであることを確認した。
- 3) 各減衰モデルの特性を、等価減衰比 $\zeta_{n,eq}$ とその 代表値 $\zeta_{eq}$ で分析し、 $\zeta_{eq}$ と減衰エネルギーに強 い相関があることを示した。

#### 参考文献

- 日本建築学会:建築の減衰,2000
- 2) Chopra AK. Dynamics of Structures. 4nd ed. Prentice Hall: USA; 2012
- Lagomarsino S.: J. Wind Engrg. Ind. Aerodyn., Vol.48, pp.221– 239,1993
- 4) O'Rourke MO .: J Struct Engrg ., ASCE 102(ST11):2401-2403;1976
- 5) Charney, FA: J. Struct. Engrg., ASCE, 134, pp.581–592, 2008
- Chopra, AK, Mckenna F: Earthq. Engrg. Struct. Dyn., 45, pp.193– 211,2016
- 7) Hall J F: Earthq. Engrg. Struct. Dyn., 47, pp.2756–2776, 2018
- 8) Wilson EL, Penzien J.: Int. J. Numer. Methods Engrg., 4, pp.5–10,1972
- 9) (株)構造システム: SNAP Ver.7 テクニカルマニュアル, 2015
- 10) midas iGen:理論マニュアル,2009
- ADINA R&D, Inc. Theory and Modeling Guide Volume I:ADINA 2018
- 12) S. Mazzoni et al.: OpenSees Command Language Manual. 2006
- Computers & Structures, Inc. (CSI). Analysis Reference Manual for SAP2000, ETABS, SAFE and CSiBridge, 2016
- 14) 柴田明徳:最新耐震構造解析 第3版、森北出版、2014
- 15) 秋山宏:エネルギーの釣合に基づく建築物の耐震設計、技報堂 出版、1999
- 16) Bernal, D.: J.Struct.Engrg., 120, pp. 1240-1254, 1994



図7 ζ<sub>eq</sub>の代表値と減衰モデルの関係